
Routine fisheries analysis in R

Michael E. Colvin

28-29 July 2009

Part I

Course overview

1 Objectives

The content of this continuing education course will focus on fisheries applications of the R pro-
gram to: import and export, manipulate, visualize, and analyze data. These topics are geared to
provide fisheries professionals with the tools to use the R program to provide analysis for reporting
and publishing fisheries data and analysis. In particular this course will emphasize uses of the R
program that will potentially be useful for visualization and analysis of data that are periodically
updated and incorporated in annual reports.

1.1 About this document

This document is intended to demonstrate the use of the R program for data summarization, visual-
ization, and analysis. Interpretations of analysis are limited and should be supplemented by a good
statistics text book. A number of applied fisheries examples are taken from Guy and Brown (2007)
and modified so that the analysis runs in R. In depth information regrading the interpretation of
analysis results can be found in Guy and Brown (2007). When applicable this document references
box numbers used in Guy and Brown (2007) to facilitate further interpretation of results.

1.2 Why R?

• R is free!

• Platform independent (works on Windows, Linux, Mac)

• Publication quality graphics

• Can be a common analysis software among collaborators

• Requires only a fraction of disc space compared to other proprietary softwares

• Additional packages extend the capabilities of R (e.g., GIS capabilities)

1



1.3 Helpful R web resources

A number of useful web resource are available for the R program and can be found in Table 1.

Table 1: Useful web resource for using the R program.
Site URL
The R Project http://www.r-project.org/
Intro to R http://cran.r-project.org/doc/manuals/R-intro.pdf
IcebreakR http://www.ms.unimelb.edu.au/~andrewpr/r-users/icebreakeR.pdf
Quick R: R for SAS, Stata users http://www.statmethods.net/index.html
The R Wiki http://wiki.r-project.org/rwiki/doku.php
Stats R Us http://pj.freefaculty.org/R/Rtips.html
R Graphics showcase http://bm2.genes.nig.ac.jp/RGM2/index.php?clear=all
R in Ecology listserv https://stat.ethz.ch/mailman/listinfo/r-sig-ecology
R Graph Gallery http://addictedtor.free.fr/graphiques/
Mike’s R stuff http://www.public.iastate.edu/~mcolvin/r.html
FishR http://www.ncfaculty.net/dogle/fishR/index.html

2 Getting started with R

2.1 Downloading and installing R

The R program is freely available from the R Project website (www.r-project.org). The base down-
load is relatively small (36 megabytes), compared to other programs (e.g., SAS, STATA, S-PLUS).
To download the program follow the following steps:

1. click the CRAN link on the left hand side of the web page

2. Select the Iowa State University CRAN Mirror from the list of potential mirrors

3. Select the Windows link from the download options

4. Click the hyperlink entitled ”base”

5. Click ”Download R 2.9.1 for Windows” and save to your workstation

6. The appropriate windows install program for R is also included on your packet CD

7. Double click R-2.9.1-win32.exe to install

8. Follow the prompts from the install shield, a typical install will be a “User Installation” with
default startup options

9. Allow the program to finish installation

2



2.2 Is R just a big fancy calculator?

Opening the the R program will result in a window that has a few drop down menus and a window
that is called the R Console (Figure 1).

Figure 1: R Console

After opening one can use the command line of the console like a big calculator (R Code Chunk
1).

R code chunk 1
2+2 # R WILL RETURN 4
2*2 # R WILL RETURN 4
2*2+6 # R WILL RETURN 10
6+2*2 # R WILL RETURN 10, IT KNOWS THE ORDER OF OPERATIONS
6+(2*2) # R ALSO RECOGNIZES BRACKETS
"AFS CONTINUING EDUCATION COURSES R FUN!" # R WILL RETURN THE TEXT

3



Figure 2: Output from the R Console from R Code Chunk 1.

2.3 Scripts

As illustrated in R Code Chunk 1, the R program is command driven. The beginning of an R
session typically starts with opening a new or existing script. Scripts are where an analyst can
write, annotate and save analysis code for future use. There are a number of ways of working with
R code and scripts. The R program has a built in script editor that is a basically a bare bones text
editor. Tinn-R is an open source script editor that specifically interfaces with the R console and has
some nice features such as color coding of parentheses (http://www.sciviews.org/Tinn-R/).
Emacs is another popular open source script editor that offers syntactic indentation and coloring
for S dialects (i.e., R, S), using the ESS package (Emacs speaks statistics) (http://www.gnu.
org/software/emacs/). The aforementioned packages offer some advantages particularly in
syntactical tabbing and coloring which may aid novice R programmers in identifying code bugs.
However I have found that in practice that the built in R script editor is just as convenient and will
be the baseline that is provided for this continuing education workshop.

NOTE: all R scripts should be saved as scriptName.R

2.4 Script annotation

In a script, annotation can be accomplished by the use of the pound sign (#) (R Code Chunk 2). R
will ignore everything to the right of allowing an analyst to add comments and meta data for future

4

http://www.sciviews.org/Tinn-R/
http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/


use. The start of a typical annotated R script usually starts with some annotation of the reason for
the analysis, date, and the person performing the analysis. To open a new script go to File > new
script. Note that when you save a script be sure to add a *.R file extension since the R program
does not do this automatically.

R code chunk 2
##### THIS IS MY FIRST R SCRIPT
##### ANYTHING I TYPE TO THE RIGHT OF THE # SIGN IS IGNORED BY R
##### I CAN ANNOTATE AS MUCH OR AS LITTLE IS NEEDED
#####
##### ANALYST: JOE BIOLOGIST, JOE.BIOLOGIST@STATEAGENCY.GOV
##### DATE: 1 JULY 2008

Annotation becomes increasingly important as an analysis gets more sophisticated and/or when
scripts are shared among collaborators. Additionally, a well annotated script is useful if there are
periodic breaks during the analysis (e.g., revisiting the analysis during manuscript revisions).

2.5 R help

R comes with a number of built in help commands, the code below demonstrates the use of those
commands (R Code Chunk 3).

R code chunk 3
?mean # Works! mean is an R command
help(mean) # Works! mean is an R command
help(regression) # Fails! regression is not an R command
help.search("regression") # Well that works alright
RSiteSearch("regression") # We can also look at the R archive on the web

2.6 Packages

R is a very lean program requiring very little space on your hard drive. To increase the functionality
of R, package have been created by various people who work with R frequently and are distributed
through CRAN. It is easy to install commonly used packages to your computer and packages can
be called as needed for use in analysis (Table ).

R code chunk 4
install.packages("package")
require(package)
update.packages() # UPDATES INSTALLED PACKAGES

Code breakdown

1. install.packages("package"): this bit of code installs a package that may be needed, it
only needs to be run once to install the package

5



2. require(package): after installation a package can be used by loading the package, load(package)
can be used as well

3. update.packages(): allows R to update packages, as they do change periodically

The packages required for this continuing education workshop can be installed to your computer
by running R Code Chunk 5.

R code chunk 5
install.packages("car")
install.packages("RODBC")
install.packages("gplots")
install.packages("maptools")
install.packages("pda",repos="http://R-Forge.R-project.org")

Table 2: Commonly use R packages.
Name Description
car Companion to applied regression
pda Practical data analysis
agricolae Statistical procedures for agricultural research
vegan Community ecology package
spatstat Spatial point pattern analysis, model-fitting, simulation, tests
RODBC ODBC database access: communicating with excel and access
gplots Various R programming tools for plotting data

3 Data structures and indexing

There are three primary data structures that are used in the analysis of fisheries data: vector,
dataframe, and lists. Each data structure has its own different primary use. Vectors are used to
hold a single list of values, while a dataframe is used to hold rows and columns of data, and a
list can hold several vectors that are allowed to vary in length. Learning how to index these data
structures will be very important for simulations that will be required throughout this continuing
education course.

3.0.1 Vectors

R code chunk 6
x<- c(1,2,3,4,5,6,7,8)
X<- c(2,3,4,5,10,12,14)# R is case sensitive
x<- as.vector(c(1,2,3,4,5,6,7,8)) # Make a vector named x
x[1] # Get the first value from the vector
x[1:3] # Get values 1 to 3 from the vector
str(x)
str(X)
summary(x)

6



Code breakdown

1. c(): used to make a vector of data (c() can be thought of as “combine”)

2. as.vector(): performs similarly to c()

3. x[1]: gets the first value from the vector x

4. x[1:3]: Get values 1 to 3 from the vector

5. str(x): returns a summary of the data types

6. dim(x): returns the number of rows and columns

7. summary(x): returns a simple summary of the data

3.0.2 Dataframes

R code chunk 7
##### Dataframes are probably the most similar to an excel database
##### Dataframes are required to have the same number of
##### rows for each column
mydataframe<- data.frame(

x= c(1,2,3,4,5),
lake=c("Clear","Clear","Spirit","Spirit","Spirit"),
y= c(2.2,3.1,5.3,6.9,3.1))

mydataframe[c(1:5),] # returns the first 5 rows of the dataframe
mydataframe[c(1:5),c(3)] # first 5 rows of the 3rd field
names(mydataframe) # returns the field names
mydataframe$group # returns all the values for the group column
str(mydataframe)
dim(mydataframe)
summary(mydataframe)

Code breakdown

1. lake=c("Clear","Clear","Spirit","Spirit","Spirit"): note the text characters are
enclosed by parentheses

2. mydataframe[c(1:5),]: within the bracket, the rows are indexed before the comma and
the columns after the comma

3. names(mydataframe): this returns the field names of the dataset

4. mydataframe$group: note the use of the $ to specify which field to return, any value re-
turned by names() is fair game to go after the $

7



3.0.3 Lists

R code chunk 8
##### Lists offer more flexibility since they can be "ragged"
##### they are useful for holding simulation and summary data
mylist<- list(lake = c("Wall Lake"), secchiTransparency= c(0.2,0.3,0.25),
fishLength=c(11,12,14,11,30,22.3,40,29))
names(mylist) # returns names of elements
mylist$lake
mylist[[2]] # returns second vector in the list secchiTransparency
mylist$fishLength[1] # Get the first value from fishLength
mylist[[3]][1] # Same as previous
str(mylist)
summary(mylist)

Code breakdown

1. list(): creates a list

2. names(myList): returns the names of the fields contained in the list

3. $: dataset$field, the $ sign tells R the field name

3.1 Quick in class exercise

1. What is the value for the 4th row and the 6 column for the mydataframe dataset?

2. Make a new object x that has the value of the 5th row and 2nd column from the mydataframe
dataset.

4 Importing data

R can import data from text files such as comma separated files and tab delimited files. Importing
data from Microsoft Excel worksheets and Microsoft Access is supported through the RODBC
package. A number of other file formats (e.g., Open Office, mySQL) are supported as well through
additional packages.

4.1 Importing text files

R code chunk 9
read.delim("C:/contEdCourseData/part1/book1.txt", header = TRUE, sep =
"\t")
read.csv("C:/contEdCourseData/part1/book1.csv", header=T)

Code breakdown:

8



1. "C:/contEdCourseData/part1/book1.txt": Specifies the location of the file to be read
into R. Note that that "\" are backwards from a typical windows pathway. This is an R quirk
that has been set primarily for interoperability of operating systems (e.g., linux, unix, mac).
File paths are always enclosed parenthetically either with double ("c:/filepath") or single
(’c:/filepath’) quotation marks.

2. header = T: Specifies that the first row of the imported dataset contains the column names
and not actual data

3. sep="\t": Specifies how the data columns are separated. In the case of sep="\t"", a
tab separation is present. One could also read a comma separated file in the same way by
specifying sep=",", however the read.csv command eliminates the need for this.

4.1.1 Tab delimited files

Since R is an object oriented program we can import a dataset and create an object.

R code chunk 10
tabdelim_dataset<-read.delim("C:/contEdCourseData/part1/book1.txt", header =
TRUE, sep = "\t")
tabdelim_dataset # RETURNS THE ENTIRE DATASET TO THE CONSOLE
head(tabdelim_dataset) # SHOWS THE FIRST FIVE ROWS OF THE DATASET
summary(tabdelim_dataset) # SUMMARIZES THE DATASET

Code breakdown:

1. read.delim: reads a tab delimited file into the R console and makes an data frame entitled
tabdelim_dataset to hold the data.

2. tabdelim_dataset: is the object that holds the imported data as identified by <- (Note =
can be used however it is used syntactically in other R functions, so use at your own risk).

3. header = TRUE: same as before that the first row contains column names

4. tabdelim_dataset: returns the entire dataset to the R console

5. head(tabdelim_dataset): shows the first 5 lines of the dataset

6. summary(tabdelim_dataset): summarizes all the fields of the dataset

4.1.2 Comma separated files

R code chunk 11
csv_dataset<-read.csv("C:/contEdCourseData/part1/book1.csv", header=T)
csv_dataset
str(csv_dataset)
dim(csv_dataset)
head(csv_dataset)
summary(csv_dataset)

9



Code breakdown

1. The above code does the same thing as read.delim however using a comma separated file.

4.2 Importing from MS Excel or Access

The use of spreadsheet and databases as repositories for data collected during ecological research
and monitoring has been increasing over the years. These types of repositories offer a number of
advantages over storing data as text files and are now common place. These programs allow the
user to save a datasheet, table, or query as tab or comma separated files for import to R and analysis.
This additional step is at times problematic with large complex datasets frequently encountered in
ecology. Problems often arise when the analyst may update the primary data repository and forget
to export the data again or many versions of the exported data exist. The annotation of the steps
required to process the data from Excel or Access are at times lost without meticulous record
keeping leading the analyst to recreate the analysis dataset. A work around for this is to read the
data directly from the data repository and perform any needed cleaning, filtering, sub setting in
R. This is beneficial as the commands used in the R script are explicit and allow the analyst to
replicate the analysis dataset at will as well as a well defined audit trail (sometimes required by
regulatory agencies). The RODBC package works by creating a communication channel between
R and Excel or Access.

R code chunk 12
# install.packages("RODBC") # already run previously to install
require(RODBC)

Code breakdown

1. install.packages("RODBC"): installs the required package from the CRAN mirror.

2. require(RODBC): calls a package from the package library for use by R, alternatively
load(RODBC) can be used

4.2.1 Microsoft Excel

R code chunk 13
channel<-odbcConnectExcel("C:/contEdCourseData/part1/book1.xls", readOnly=T)
sqlFetch(channel, "Sheet1")
excel_dataset<- sqlFetch(channel,"Sheet1")
head(excel_dataset)
summary(excel_dataset)

Code breakdown

1. odbcConnectExcel: creates an open communication channel to the excel workbook

10



2. sqlFetch: imports an entire worksheet from the Excel workbook with the open communi-
cation channel

3. head(excel_datasheet): returns the first five rows of a dataset

4. summary(excel_datasheet): summarizes all the fields of the dataset

4.2.2 Microsoft Access

R code chunk 14
channel_access<- odbcConnectAccess("C:/contEdCourseData/part1/book1.mdb")
sqlFetch(channel_access,"Book1")
access_dataset<- sqlFetch(channel_access,"Book1")
head(access_dataset)
str(access_dataset)
summary(access_dataset)

Code breakdown

1. odbcConnectAccess("C:/contEdCourseData/part1/book1.mdb"): creates an open com-
munication channel to the excel workbook

2. sqlTable: returns an entire table from a access database

3. access_dataset<- sqlTable(channel_access,"Book1"): returns the dataset to an ob-
ject names access_dataset

4.3 Working directory

Setting a working directory allows us to specify a filepath by typing a period.

R code chunk 15
##### Setting a new working directory
getwd() # Gets the current working directory
setwd("C:/contEdCourseData/part1/") # sets the new working directory

##### We can now read in a file using a period
read.csv("./book1.csv") # this saves lots of typing

Code breakdown

1. setwd("C:/contEdCourseData/part1/"): note the backslashes are “/” and not “\” as
with a normal windows pathway. 1

1This allows for platform independence. Code written on a windows operating system will run on a linux or
macintosh machine.

11



4.4 Getting data out

R code chunk 16
###### lets save our analysis file
write.csv(excel_dataset, "./filename.csv")

Code breakdown

1. write.csv(excel_dataset, "./filename.csv"): pretty straight forward, just the R
object (excel_datatset) and the path and filename to save the dataset as

4.5 In class exercise

1. Change your current working directory to "c:"

2. Use the getwd() function to make sure you working directory has changed

3. Import the trawlData.csv from the folder C:/contEdCourseData/part1 as an object named
trawlData_csv.

4. Import the same dataset from trawlData.xls (worksheet = data) as an object named trawlData.

5. Briefly look at the data using: head(), str(), and dim() functions.

5 Data manipulation and summarization

The following section will use a dataset of length and weight data for fishes captured over two years
of trawling. Some things to note are that each fish was measured for total length (mm), however
only a subset of fish were measured for weight. Over the two years approximately 45 trawl runs
were conducted for a total of approximately 90 runs and the dominant fish captured were walleye,
yellow bass, common carp, and black bullhead Colvin et al. (2008, 2009) (Figure 3).

R code chunk 17
# IMPORT TRAWL CATCH DATA
trawlData_csv<-read.csv("./trawlData.csv")
channel<- odbcConnectExcel("./trawlData.xls")
trawlData<- sqlFetch(channel, "data")

# HOW BIG IS THE DATASET?
dim(trawlData)
# WHAT ARE THE DIMENSIONS OF THE DATASET?
str(trawlData)
# LETS LOOK AT THE FIRST 5 ROWS OF THE DATASET
head(trawlData)
# WHAT ARE THE NAMES OF THE FIELDS IN THE DATASET?
names(trawlData)

12



460000 462000 464000 466000 468000

4770000

4772000

4774000

4776000

4778000

N

N
or

th
in

g

Easting

Figure 3: Trawling routes randomly selected for Clear Lake used in fiscal years 2007 and 2008
(n=45).

5.1 Commonly used builtin functions for basic statistics

The R program has a number of useful builtin functions for generate basic statistics. R Code Chunk
18 will use these functions to generate some basic statistics for the lengths of fish captured during
two years of trawling.

13



R code chunk 18
# SOME BASIC STATISTICS FOR FISH LENGTHS
mean(trawlData$fishLength) # mean of fish lengths
min(trawlData$fishLength) # min of fish lengths
max(trawlData$fishLength) # maximum of fish lengths
range(trawlData$fishLength) # range of fish lengths
var(trawlData$fishLength) # variance of fish lengths
sd(trawlData$fishLength) # standard deviation of fish lengths
length(trawlData$fishLength) # how many observations?
summary(trawlData$fishLength) # summarize fish lengths

5.1.1 Handling missing values

In the case of fish weights in this dataset there are a number of missing values. In general in R there
are always several ways to handle this and R Code Chunk 19 will demonstrate how to calculate
summary statistics and dealing with missing values.

R code chunk 19
summary(trawlData$fishWeight)
# SOME BASIC STATISTICS FOR FISH LENGTHS
mean(trawlData$fishWeight, na.rm=TRUE) # mean of fish weight
min(trawlData$fishWeight, na.rm=TRUE) # min of fish weight
max(trawlData$fishWeight, na.rm=TRUE) # maximum of fish weight
range(trawlData$fishWeight, na.rm=TRUE) # range of fish weight
var(trawlData$fishWeight, na.rm=TRUE) # variance of fish weight
sd(trawlData$fishWeight, na.rm=TRUE) # standard dev. of fish weight

Code breakdown

1. na.rm=TRUE: calculates the summary statistic by removing any missing values na.rm=T
does the same thing

5.2 Converting characters and numbers to factors

The R program by default attempts to classify data fields (columns) as numeric, integer, factor, or
characters. This can be problematic if the contents of a data field are numeric and represent a lake
or site. NOTE: R is case sensitive

R code chunk 20
# WHAT FACTOR LEVELS ARE THERE FOR FISH SPECIES?
summary(trawlData$species)
levels(trawlData$species)
# LETS LOOK AT SITES
summary(trawlData$sites) # it is a integer and is should be a factor
trawlData$sites<- as.factor(trawlData$sites) # convert numeric to a factor

14



5.3 Tabulating data

There are several ways to create simple summaries of data in R using builtin functions table()
and xtabs()that are illustrated in R Code Chunk 21.

R code chunk 21
# TABLULATE COUNTS OF FISH BY SPECES
table(trawlData$species) # species count
table(trawlData$basin) # count by lake basin
# TABULATE BASIN BY SPECIES
xtabs(~basin + species, trawlData)

The table() and xtabs() functions are useful for summarizing counts, however cannot handle
more complex summaries such as a mean or variance. The tapply() function can summarize data
based on an index variable such as lake basin or species or even both (R Code Chunk 22).

• table(variable)

• xtabs(rowVariable, columnVariable)

• tapply(variableToSummarize, indexVariable, function,na.rm=T)

R code chunk 22
# SUMMARIZE MEAN FISH LENGTH BY BASIN
tapply(trawlData$fishLength, trawlData$basin, mean)
# SUMMARIZE FISH LENGTH VARIANCE BY BASIN
tapply(trawlData$fishLength, trawlData$basin, var)
# SUMMARIZE MEAN FISH LENGTH BY SPECIES
tapply(trawlData$fishLength, trawlData$species, mean)
# WHAT ABOUT WEIGHT
tapply(trawlData$fishWeight, trawlData$species, mean)
tapply(trawlData$fishWeight, trawlData$species, mean, na.rm=TRUE)

# WHAT ABOUT A SPECIES BY BASIN BY YEAR SUMMARY?
# WE NEED TO MAKE A UNIQUE BASIN AND SPECIES INDEX
trawlData$index<- paste(trawlData$year, trawlData$basin, trawlData$species)
# USING THE NEW INDEX VARIABLE WE CAN SUMMARIZE AS BEFORE
tapply(trawlData$fishLength, trawlData$index, mean)

Code breakdown

1. na.rm=TRUE: Adding the na.rm=TRUE to the tapply() function tells R to remove any
missing values prior to calculating the summary statistic.

2. paste(): this function concatenates 2 or more variables into a single variable. In this case
we use it to make a unique id to summarize over.

15



The summaries presented in R Code Chunk 22 are sufficient for looking at summaries of data in
R, however in most cases we need to summarize data and export the summarized data for a report,
presentation or a manuscript. R Code Chunk 23 will demonstrate how to create a dataframe of
summary statistics and export that summary to you working directory.

• data.frame(columnName1=columnData1, columnName2=columnData2, ...)

R code chunk 23
# MAKING A SUMMARY TABLE FOR AN ANNUAL REPORT
summaryTable<- data.frame( # lets use a dataframe for this

year= tapply(trawlData$year, trawlData$index, unique),
basin= tapply(as.character(trawlData$basin), trawlData$index, unique),
species= tapply(as.character(trawlData$species), trawlData$index,

unique),
meanLength= tapply(trawlData$fishLength, trawlData$index, mean),
minLength= tapply(trawlData$fishLength, trawlData$index, min),
maxLength= tapply(trawlData$fishLength, trawlData$index, max))

# NOW WE CAN SAVE THIS TO PUT IN OUR REPORT
write.csv(summaryTable, "./summaryTable.csv")
# THIS SCRIPT CAN NOW BE RERUN EACH YEAR!

Code breakdown

1. data.frame(): the use of data.frame allows us to make an excel like spreadsheet of data.
The usage is simple data.frame(name=column1, name=column2, name=column3...)
just make sure all your columns are the same length!

2. as.character(trawlData$basin): this is a nuance of R. Since basin is a factor, inter-
nally R references to these as numbers, so we need to convert it to a character to actually get
the basin name, not the number!

3. unique: this function grabs the unique values from a list of values

5.4 Conditional expressions

There are times when we need to know if a value passes as test. An example of this would be if a
fish is a carp or not or if a fish is greater than a certain length. This can be done using the ifelse
and the logical operators from Table 3 and is demonstrated in R Code Chunk 24.

• ifelse(variable, logical argument, True, False)

16



R code chunk 24
ifelse(trawlData$fishLength > 500 , 1, 0)
trawlData$aggBasins<- ifelse(trawlData$bassin %in% c("little",
"middle"),"Western","Eastern")
trawlData$carp<-ifelse(trawlData$species=="CRP", 1,0)
mean(trawlData$carp) # percent of the catch that was carp
trawlData$carp_bullhead<-ifelse(trawlData$species=="CRP"|trawlData$species=="BBH",
1,0)
# percent of the catch that was carp or bullhead
mean(trawlData$carp_bullhead)
mean(ifelse(trawlData$species%in%c("CRP","BBH"), 1,0))# same as above

Code breakdown

1. ifelse(trawldata$fishLength > 500 , 1, 0): this command evaluates whether fish-
Length is greater than 500 and if this is true a 1 is returned, if not a 0 is returned, this could
also be "yes", "no", "true", "false", anything you want however using 1 and 0 allows for easy
calculation of percentages.

2. trawlData$carp<-: adds a field (column) to our dataframe to hold the results of this test

3. mean(trawlData$carp): by calculating the mean of this we see what percentage of the
catch was carp

4. %in%: this is used commonly to get several values in a list it works similar to a series of or
statements

5.5 Subsetting a dataset

There are many ways to manipulate data post import. The benefit of manipulating data after im-
porting allows the analyst to track manipulations, leaving an audit trail and the original analysis
datasets unmanipulated. This is increasingly important when working for agencies with regulatory
capacity, collaboration with fellow analysts, and maintaining reproducible analysis.

• subset(dataset, subsetting arguments)

17



R code chunk 25
subset(trawlData, species==c("CRP"))
subset(trawlData, fishLength >250)
subset(trawlData, (species==c("CRP") & fishLength >250))
subset(trawlData, species %in% c("CRP","BBH","BUF"))
subset(trawlData, species != c("CRP"))

##### If the dataset is subset by a factor,
##### we should to drop the unused factor
##### or else it R will give summaries, ect for that factor level
trawlNoCarp<- subset(trawlData, species != c("CRP"))
tapply(trawlNoCarp$fishLength, trawlNoCarp$species, mean)
# WHY THE NA FOR CARP?
trawlNoCarp$species<- trawlNoCarp$species[,drop=T]
tapply(trawlNoCarp$fishLength, trawlNoCarp$species, mean) # carp are gone!

Code breakdown

1. subset: subset returns the rows of the dataset where the group is equal to d

2. &: subset returns the rows of the dataset where the group is equal to d and x1 is greater than
5 (see table 3 for a list of legal operators)

3. drop=T: this portion of code within the brackets drops unused levels of the factor, which can
be problematic when summarizing data

Table 3: Legal operators for subsetting dataframes, vectors, and matrices
Operator Action

== equal to
> greater than
< less than

>= greater than or equal to
<= less than or equal to
!= not equal

%in% within
& and
| or

5.6 Merging datasets

Often in fisheries type data there are values that need to be added to a dataset based on an identifi-
cation. An example of this would be values of stock and quality length to calculate PSD for a fish
population. This can be completed in R using the merge() function (R Code Chunk 26).

• merge(dataset1, dataset2, by.x=mergeVarDataset2, by.y=mergeVarDataset2, all.x=T)

18



R code chunk 26
# READ IN QUALITY LENGTH AND STOCK LENGTH TABLE FOR EACH FISH SPECIES
psdData<-read.csv("./psdData.csv")
psdData # look at the data
# THE FISH SPECIES CODE IS UNIQUE FOR EACH SPECIES AND
# MATCHES THE SPECIES CODES USED IN psdData
trawlData<- merge(trawlData, psdData, by.x="species", by.y="species",
all.x=TRUE)
head(trawlData) # dataset has the appropriate values needed to calculate PSD

trawlData$stockLength<-ifelse(trawlData$fishLength>trawlData$stockLength,1,0)
trawlData$qualityLength<-ifelse(trawlData$fishLength>trawlData$qualityLength,1,0)
overallSummary<- data.frame(

spp = tapply(as.character(trawlData$commonName), trawlData$index,unique),
year= tapply(trawlData$year, trawlData$index,unique),
n_Qual = c(tapply(trawlData$qualityLength, trawlData$index,sum,na.rm=TRUE)),

n_Stock = c(tapply(trawlData$stockLength, trawlData$index,sum,na.rm=TRUE)))

Code break down:

1. by.x: specifies the column name in trawlData that contains the values to merge on

2. by.y: specifies the column name in psdData that contains the values to merge on

3. all.x=TRUE: this lets R know that you want all the values of trawlData retained. Species
where there is not a quality length and stock length specified in psdData will be assigned
NA. If FALSE is specified then the resulting dataset will only contain values where there is
a matching lakeId in trawlData and psdData.

5.7 In class exercise

1. Import lakeData.csv and catchData.csv from C:\contEdCourseData\part1 (this should al-
ready be your working directory, use getwd() to make sure).

2. Merge the individual lake data from lakeData.csv to catch data from catchData.csv based on
lakeId

3. Make a summary table that includes the following: lakeId, lakeName, lakeArea, and the
mean and variance of fish length and weight.

4. Export the table you your working directory as a *.csv file.

6 Visualizing data

R has a number of base graphics that can be used to explore your data, such as boxplots, scatter-
plots, and histograms. Plots can easily be saved as publication quality file formats (e.g., jpeg, wmf,
eps), eliminating the need for graphics software (e.g., Sigma plot).

19



6.1 Boxplots

• boxplot(Yvariable~Xvariable, dataset, col=" ", main=" ", xlab=" ", ylab="
")

R code chunk 27
boxplot(fishLength~lake, catchData)
boxplot(fishLength~lake, catchData, main="Boxplot of fish lengths")
boxplot(fishLength~lake, catchData, main="Boxplot of fish lengths",
xlab="Lake",ylab="Fish Length (mm)")

# ADD SOME COLOR
boxplot(fishLength~lake, catchData, main="Boxplot of fish lengths",
xlab="Lake",ylab="Fish Length (mm)",col="red")
# CAN WE SUBSET?
boxplot(fishLength~lake, catchData, main="Boxplot of fish lengths",
xlab="Lake",ylab="Fish Length (mm)",col="red", subset=lake !="Lake c")

Code breakdown

1. col="red": fills each boxplot with red

2. subset=lake !="Lake c": allows us to subset the dataset without having to make a new
object

6.2 Histograms

• histogram(variable, breaks, include.lowest=T

20



R code chunk 28
##### A histogram of all the fish lengths
hist(trawlData$fishLength)
savePlot("./lengthFreq",type="jpg")

# SOME INTERVALS TO BIN FISH LENGTHS INTO
bins<- seq(0,600, by=25)
bins
# LENGTH FREQUENCY HISTOGRAM
hist(trawlData$fishLength, breaks=bins, include.lowest=T)
# A DENSITY PLOT
hist(trawlData$fishLength, breaks=bins, include.lowest=T, freq=F)
# LETS ADD A TITLE
hist(trawlData$fishLength, breaks=bins, include.lowest=T, freq=F,
main="Lenght frequency plot", xlab="Length (mm)",ylab="Density")
# LETS MAKE THE BARS BLACK
hist(trawlData$fishLength, breaks=bins, include.lowest=T, freq=F,
main="Length frequency plot", xlab="Length (mm)",ylab="Density",
col="black")
savePlot("./lengthFrequency",type="jpg")

Code breakdown

1. seq(): makes a sequence of numbers from 0 to 600 by a interval of 25

2. include.lowest=T: uses the sets up the bins such that a value goes into the interval if it is
greater than or equal to.

3. freq=f: converts the plot from a frequency to a density plot

4. col="black": fills the bars with black

5. savePlot("./figure",type="jpg"): saves the current plot to your working directory as
a figure.jpg (“wmf”, “pdf”, “eps” are also allowed)

6.3 Barplots

• barplot(height, width, names, col="")

• barplot(height, width, names, besides=T, col="")

21



R code chunk 29

summaryTable
sum_2007<- subset(summaryTable, year==2007)
sum_2008<- subset(summaryTable, year==2008)
barplot(sum_2007$meanLength, names.arg=sum_2007$species)
barplot(sum_2007$meanLength, names.arg=sum_2007$species, col="blue")
# THE X LABELS ARE NOT THAT USEFUL, LETS ROTATE THEM
barplot(sum_2007$meanLength, names.arg=sum_2007$species, col="blue", las=2)
barplot(sum_2007$meanLength, names.arg=sum_2007$species, density=20, las=2)

Code breakdown

1. las=2: this will rotate the axis labels (can be between 1 and 4)

6.4 Scatterplots

A number of point and line types can be used in R graphics allowing the user great flexibility in
producing figures of data (Figure 4).

R code chunk 30
plot(fishWeight~fishLength, trawlData)
# add a title
plot(fishWeight~fishLength, trawlData, main="Weight-Length for fish")
# add better axis labels
plot(fishWeight~fishLength, trawlData, main="Weight-Length for fish",
xlab="Length (mm)", ylab="Weight (g)")
# We can copy and paste this directly into MS Word

##### Lets add some grouping
plot(fishWeight~fishLength, trawlData, main="Weight-Length for fish",
xlab="Length (mm)", ylab="Weight (g)",type="n")
points(fishWeight~fishLength, trawlData,subset=species=="CRP",col="red")
points(fishWeight~fishLength, trawlData,subset=species=="YLB", col="blue")
points(fishWeight~fishLength, trawlData,subset=species=="WAL", col="green")
points(fishWeight~fishLength, trawlData,subset=species=="BBS", col="black")

##### Lets add some grouping with different points plot(fishWeight~fishLength,
trawlData, main="Weight-Length for fish", xlab="Length (mm)",
ylab="Weight (g)",type="n") points(fishWeight~fishLength,
trawlData,subset=species=="CRP",col="red",

pch=1)
points(fishWeight~fishLength, trawlData,subset=species=="YLB", col="blue",

pch=2)
points(fishWeight~fishLength, trawlData,subset=species=="WAL", col="green",

pch=3) points(fishWeight~fishLength, trawlData,subset=species=="BBS",
col="black",

pch=4)

22



Fi
gu

re
4:

A
va

ila
bl

e
po

in
ta

nd
lin

e
ty

pe
s

us
ed

in
R

.

23



Code breakdown

1. plot(trawlData): plots the dataset as matrix of scatterplots, sometimes useful for initially
evaluating a dataset

2. main=" ", xlab=" ", ylab=" ": adds customizable labels for the plot and axes

3. type="n": plots all the data without points, this allows the plot to have the appropriate x
and y limits

4. points( ): adds the a group to the empty plot

Code breakdown

6.4.1 Fine tuning scatter plots

R code chunk 31
# THE POINTS NEED TO BE BIGGER AND FILLED
# CEX IS A MAGNIFICATION FACTOR AND PCH 1-25 ARE ALL SORTS OF SYMBOLS
plot(fishWeight~fishLength, trawlData,cex=2,pch=19)
# MY BOSS WANTS BIGGER FONT FOR THE LABELS
# CEX.AXIS IS A MAGNIFICATION FOR THE AXIS FONT
# CEX.LAB IS A MAGNIFICATION FOR THE LABEL FONT
plot(fishWeight~fishLength,trawlData,cex=1.5,pch=19,

cex.axis=1.1,cex.lab=1.2,xlab="Fish length(mm)")
# PERSONALLY, I DISLIKE HAVING THE NUMBERS ON THE YAXIS
# ORIENTED PARALLEL TO THE AXIS
# LAS=1 FIXES THAT
plot(fishWeight~fishLength,trawlData,cex=1.5,pch=19,

cex.axis=1.1,cex.lab=1.2,xlab="Fish length(mm)",
ylab="Weight (g)",las=1)

6.5 Legends

• legend("location", listOfNames, listOfPoints,listOfColors)

24



R code chunk 32
##### Lets add some grouping with different points plot(fishWeight~fishLength,
trawlData, main="Weight-Length for fish", xlab="Length (mm)", ylab="Weight
(g)",type="n")
points(fishWeight~fishLength,trawlData,subset=species=="CRP",col="red",

pch=1)
points(fishWeight~fishLength, trawlData,subset=species=="YLB", col="blue",

pch=2)
points(fishWeight~fishLength, trawlData,subset=species=="WAL", col="green",

pch=3) points(fishWeight~fishLength, trawlData,subset=species=="BBS",
col="black",

pch=4)
legend("topleft", c("Common carp", "Yellow bass", "Walleye", "Black
bullhead"),

pch=c(1,2,3,4),col=c("red","blue", "green", "black"))

Code breakdown

1. "topleft": other options can be: topleft, bottomright, bottomleft

7 Functions

R code chunk 33
add<-function(var1,var2,var3){var1+var2+var3}
add(4,6,20)

# A SUMMARY FUNCTION
var_summary<- function(var1,var2){
par(mfrow=c(2,1))
hist(var1);savePlot("./hist1",type="pdf")
hist(var2);savePlot("./hist2",type="pdf")
mean(var1, na.rm=T)
mean(var2, na.rm=T)
}

##### Use the function to summarize a dataset
var_summary(trawlData$fishLength,trawlData$fishLength)

Code breakdown

1. function(var1,var2,var3): this specifies the variables needed for the function

2. par(mfrow=c(2,1)): sets a 2 row by 1 column plot

3. {}: the brackets contain the operations for the function

4. var_summary(csv_dataset$y,csv_dataset$x1): applies the function

25



8 Some statistical functions

8.1 Linear model

The lm() function in R fits a linear model to data. We can fit a linear model to some data and
call the output whatever we want, in this case I named the fitted model, ”fit.” In this case, fit
is a list that contains fitted values (Ŷi), residuals (εi), and estimates for β j . Once the model is fit
was can get a summary of the model using summary() and an anova table using the anova() and
Anova() functions.

R code chunk 34
require("car")
fit<- lm(fishWeight~fishLength ,trawlData) # fits a linear regression
plot(fit)# diagnostics

# LOG TRANSFORM VARIABLES
trawlData$lweight<- log(trawlData$fishWeight)
trawlData$llength<- log(trawlData$fishLength)
fit<- lm(lweight~llength ,trawlData)
plot(fit)
summary(fit) # returns information about the model fit
anova(fit)# returns an anova table
Anova(fit, type="III")
Y_hats<- fit$fitted # extracts the predicted values
residuals<- fit$resid # extracts the residuals
confint(fit)

# ADD A SPECIES INTERACTION
fit<- lm(lweight~llength*species ,trawlData)
plot(fit)
summary(fit) # returns information about the model fit
anova(fit)# returns an anova table
Anova(fit)
confint(fit)

Code breakdown

1. lm(): fits a linear model

2. summary(): summarizes the model

3. anova(): produces type I sums of squares anova table

4. Anova(): produces type II or III sums of squares anova table

5. fit$fitted: model predicted values

6. fit$resid: model residuals

7. confint(fit): extracts 95% confidence intervals for the parameter estimates

26



8.2 Non linear models

R code chunk 35
# FIT A NON LINEAR REGRESSION
fit<- nls(fishWeigth~a*fishLength^b ,trawlData, start=list(a=0.0001, b=3))
summary(fit)
# A WEIGHT-LENGTH RELATIONSHIP FOR CARP
fit<- nls(fishWeigth~a*fishLength^b ,trawlData, start=list(a=0.0001,
b=3),subset=species=="CRP")
summary(fit)

8.3 In class exercise

1. Import the dataset walleye.csv from C:\contEdCourseData\part1

2. Plot a histogram of the length frequencies

3. Plot a scatterplot of the weight to length relationship

4. Log transform weight and length

5. Fit a linear model of log(length) and log(weight)

6. Using the same data fit a non linear model of weight-length assuming the form W = a∗Lb,
where W is weight and L is length.

8.4 Closing

The previous functions are but a few of the many functions that R has for statistical analysis. Other
potentially useful functions include glm() for logistic and Poisson regression, lme() for mixed
effects models, and nlme() for non linear mixed effects models.

Part II

Routine fisheries analysis
The following examples are largely from Guy and Brown (2007). The scope of this continuing
education workshop is to present a potential tool for practicing fisheries professionals to use for
routine fisheries analysis. Therefore interpretation is limited. For in depth interpretation of analysis
results can be found in the chapter sections of Guy and Brown (2007).

27



9 Estimation of Z from population metrics

R code chunk 36 Estimate Z from population metrics (Hayes et al., 2007)
setwd("C:/contEdCourseData/part2")
lengths <- read.csv("./box6_8.csv")
head(lengths)
hist(lengths$len/10,xlab="Length (cm)")
bins<- seq(9,53, by=1)
h<-hist(lengths$len/10,breaks=bins, right=FALSE, xlab="Length (cm)")
Linf <- 636
K <- 0.226
meanLength <- mean(lengths$len)
minLength <- min(lengths$len)
Z_bevertonHolt <- K * (Linf - meanLength)/(meanLength - minLength)
Z_bevertonHolt
medLength <- median(lengths$len)
Ymedian <- -log(1 - medLength/Linf)
Ymin <- -log(1 - minLength/Linf)
Z_Hoenig <- 0.693 * K/(Ymedian - Ymin)
Z_Hoenig

28



29



10 Age and length

10.1 Age length key

R code chunk 37 Age length key (Isely and Grabowski, 2007).
setwd("C:/contEdCourseData/part2")
key <- read.csv("./box5_1.csv")
lengths <- read.csv("./box5_1_lengthData.csv")
str(lengths)
key$tlint<- ifelse(key$tl< 100, 90, 0)
key$tlint<- ifelse(key$tl>=100 & key$tl< 120, 100, 0)
key$tlint<- ifelse(key$tl>=120 & key$tl< 140, 120, 0)
key$tlint<- ifelse(key$tl>=140 & key$tl< 160, 140, 0)
key$tlint<- ifelse(key$tl>=160 & key$tl< 180, 160, 0)
key$tlint<- ifelse(key$tl>=180 & key$tl< 200, 180, 0)
key$tlint<- ifelse(key$tl>=200 & key$tl< 220, 200, 0)
key$tlint<- ifelse(key$tl>=220 & key$tl< 240, 220, 0)
key$tlint<- ifelse(key$tl>=240 & key$tl< 260, 240, 0)
key$tlint<- ifelse(key$tl>=260 & key$tl< 280, 260, 0)
key$tlint<- ifelse(key$tl>=280 & key$tl< 300, 280, 0)
key$tlint<- ifelse(key$tl>=300 & key$tl< 320, 300, 0)
key$tlint<- ifelse(key$tl>=320 & key$tl< 340, 320, 0)
key$tlint<- ifelse(key$tl>=340 & key$tl< 360, 340, 0)
key$tlint<- ifelse(key$tl>=360 & key$tl< 380, 360, 0)
key$tlint<- ifelse(key$tl>=380 & key$tl< 400, 380, 0)
key$tlint<- ifelse(key$tl>=400 & key$tl< 420, 400, 0)
key$tlint<- ifelse(key$tl>=420 & key$tl< 440, 420, 0)
key$tlint<- ifelse(key$tl>=440 & key$tl< 460, 440, 0)
key$tlint<- ifelse(key$tl>=460 & key$tl< 480, 460, 0)
key$tlint<- ifelse(key$tl>=480 & key$tl< 500, 480, 0)
key$tlint<- ifelse(key$tl>=500 & key$tl< 520, 500, 0)
key$tlint<- ifelse(key$tl>=520 & key$tl< 540, 520, 0)
# AN EASIER WAY, THIS DOES THE SAME THING AS THE PREVIOUS 23 LINES
bins<- c(0,seq(100,540, by=20))
labels.x<- c(90, seq(100,520, by=20))
key$tlint<-cut(key$tl, breaks = bins, right=FALSE, include.lowest=TRUE,labels=labels.x)
summaryTable <- table(key$tlint, key$age)
ageLengthKey <- prop.table(summaryTable , margin = 1)
ageLengthKey[which(is.na(ageLengthKey ))]<-0
ageLengthKey <- round(ageLengthKey, digits=3)
lengths$tlint<-cut(lengths $tl, breaks = bins, right=FALSE,
include.lowest=TRUE,labels=labels.x)
lengths<- subset(lengths, tl<520)
len.freq <- table(lengths$tlint)
dim(ageLengthKey)
length(len.freq)
# A LIST OF NUMBER OF FISH ASSIGNED TO EACH AGE GROUP
ageFrequency<-len.freq %*% ageLengthKey
ageFrequency 30



10.2 Back calculated length

R code chunk 38 Back calculated length (Isely and Grabowski, 2007).
setwd("C:/contEdCourseData/part2")
backCalc <- read.csv("./box5_2.csv")
str(backCalc)
head(backCalc)
backCalc$Si2 <- backCalc$Si*10/24
# convert radial measurements
backCalc$Sc2 <- backCalc$Sc*10/24
# convert total scale radius
backCalc$Li1 <- backCalc$Lc * backCalc$Si2/backCalc$Sc2

# Fraser-Lee Method
fit <- lm(Li1 ~ Si2, backCalc)
anova(fit)
a <- coef(fit)[1] # get the correction factor (first coefficient in lm1)
backCalc$Li2 <- a + (backCalc$Lc-a)*(backCalc$Si2/backCalc$Sc2)

31



11 Sampling and experimental design

11.1 Simple random sample

R code chunk 39 Estimating the age composition form a random sample of brown trout (Page 63
Hansen et al., 2007).
ageData<- data.frame(

age=c(0,1,2,3,4,5,6,7),
n=c(55,22,10,18,6,3,1,1))

totalNumberOfTrout<-sum(ageData$n)
ageProportion<- ageData$n/totalNumberOfTrout
# CALCULATED PROPORTION
seAgeProportion<- sqrt(ageProportion*(1-ageProportion)/(totalNumberOfTrout-1))

# STANDARD ERROR OF THE ESTIMATE
# FUNCTIONS TO CALCULATE CONFIDENCE INTERVALS
lowerCI<- function(ageCounts, alpha){
N<- sum(ageCounts)
lowerF<-qf(alpha,2*(N-ageCounts+1),2*ageCounts,lower.tail = FALSE)
ageCounts/(ageCounts+(N-ageCounts+1)*lowerF) }
upperCI<- function(ageCounts, alpha){
# TO RUN THIS FUNCTION INPUT A VECTOR OF AGE COUNTS
# AND AN ALPHA VALUE
N<- sum(ageCounts)
upperF<-qf(alpha,(2*ageCounts)+2,(2*(N-ageCounts+1)-2),lower.tail=FALSE)
((ageCounts+1)*upperF)/(N-ageCounts+(ageCounts+1)*upperF)
}# END FUNCTION
# END FUNCTIONS TO CALCULATE CONFIDENCE INTERVALS
# ENTER A VECTOR OF AGE COUNTS AND AN ALPHA TO CALCULATE CONFIDENCE LIMITS
lowerCL<-lowerCI(ageData$n,0.05)
upperCL<-upperCI(ageData$n,0.05)
# CREATE A SUMMARY TABLE
summaryTable<- data.frame(
age=ageData$age, proportion_age=ageProportion,
SE=seAgeProportion, LowerCL=lowerCL, UpperCL=upperCL)
summaryTable
write.csv(" ./summaryTableRandomSample.csv")

32



11.2 Simple stratified random sampling

R code chunk 40 Estimate the mean catch from a stratified random sample (Hansen et al., 2007).
setwd("C:/contEdCourseData/part2")
srs<- read.csv("./box3_4.csv")
# CALCULATE MEAN AND VARIANCE OF THE STRATA
stratumSummary<- data.frame(

stratum= tapply(as.character(srs$stratum),srs$stratum,unique),
n= tapply(srs$Catch,srs$stratum,length),
mean=tapply(srs$Catch,srs$stratum,mean),
variance=tapply(srs$Catch,srs$stratum,var))

stratumSummary$weights<- c(0.2125,0.5375,0.250)
meanCatch<- sum(stratumSummary$weights*stratumSummary$mean)
meanCatachSE<- sqrt(sum((stratumSummary$weights^2*stratumSummary$variance)/
stratumSummary$n))
CI<- meanCatachSE*qt(0.975,df=nrow(srs)-3)
lowerCI<-meanCatch- CI
upperCI<-meanCatch+ CI

11.3 Cluster sample

R code chunk 41 Estimation of the mean weight of age 0+ bluegill from a cluster sample (Hansen
et al., 2007).
setwd("C:/contEdCourseData/part2")
cluster<- read.csv("./box3_5.csv")
cluster$countId<- ifelse(is.na(cluster$Weight)==TRUE,0,1)
summary<- data.frame(

net= tapply(as.character(cluster$Net),cluster$Net,unique),
catch= tapply(cluster$countId,cluster$Net,sum),
clusterTotal=tapply(cluster$Weight,cluster$Net,sum,na.rm=T))

numberOfNets<- nrow(summary)
meanCatch<- sum(summary$catch)/numberOfNets
meanWeight<- sum(summary$clusterTotal)/sum(summary$catch)
meanWeightSE<- (1/(sqrt(numberOfNets)*meanCatch))* sqrt(
sum((summary$clusterTotal-meanWeight*summary$catch)^2)/(numberOfNets-1))
CI<- meanWeightSE*qt(0.975,df=numberOfNets-1)
lowerCI<- meanWeight-CI
upperCI<- meanWeight+CI

33



11.4 Systematic sample

R code chunk 42 Estimate the mean width of a stream based on a systematic sampling design
(Hansen et al., 2007) .
setwd("C:/contEdCourseData/part2")
systematic<- read.csv("./box3_6.csv")
clusterTotals<- tapply(systematic$width,systematic$sample,sum)
samplesWithinCluster<- tapply(systematic$sample,systematic$sample,length)
nclusters<- length(tapply(systematic$sample,systematic$sample,unique))
meanWidth<- mean(systematic$width)
meanWidthSE<- 1/(sqrt(2)*15)* sqrt((sum((clusterTotals-meanWidth*15)^2))/
(nclusters-1))

11.5 Regression or double sampling

R code chunk 43 Estimate the mean coverage of woody debris based on calibrated visual estimates
(Hansen et al., 2007).
setwd("C:/contEdCourseData/part2")
regression<- read.csv("./box3_7.csv")
subset<- na.omit(regression)
measuredObs<- nrow(subset)
fit<- lm(Measured~Estimated,subset)
slope<- fit$coeff[2]
interecept<-fit$coeff[1]
xbar<- mean(subset$Estimated)
ybar<- mean(subset$Measured)
Xbar<- mean(regression$Estimated)
meanCoverage<- ybar+slope*(Xbar-xbar)
meanCoverageSE<- sqrt(1/(measuredObs*(measuredObs-2))*(sum((subset$Measured-ybar)^2)-
(sum((subset$Measured-ybar)*((subset$Estimated-xbar)^2))/
(sum((subset$Estimated-xbar)^2)))))

34



11.6 Completely randomized design

R code chunk 44 Analysis evaluates differences catches based on bag limits that were randomly
assigned to lakes (Hansen et al., 2007).
setwd("C:/contEdCourseData/part2")
crd<- read.csv("./box3_8.csv") # the data
require(car);require(pda) # packages needed for analysis
options(contrasts=c("contr.sum","contr.poly")) # this is needed to reproduce
SAS results
str(crd) crd$bag_limit<- as.factor(crd$bag_limit)# make bag limit a factor
fit <- lm(catch ~ bag_limit, crd) # model of the data
plot(fit) # plot model diagonstics
anova(fit) # provides type I sums of squares
Anova(fit, type="III") # provides type III sums of squares
lsmean(fit, level=0.05, pdiff=T) # evaluates differences in lsmeans

11.7 Diagnostics and assumptions

R code chunk 45 Diagnostics and assumptions Hansen et al. (2007).
setwd("C:/contEdCourseData/part2")
residuals<- residuals(fit) # extract residuals from the previous model
summary(residuals)
hist(residuals) # histgram of residuals
qqnorm(residuals) # plot of qqnorm
shapiro.test(residuals) # test for normality
ks.test(residuals, "pnorm") # ks test
boxplot(residuals~crd$bag_limit) # boxplot of residals by bag limit factor
abline(h=0,col="red") # add a red line to the previous plot

35



11.8 Randomized block design

R code chunk 46 Randomized block design (Hansen et al., 2007). Page 93
setwd("C:/contEdCourseData/part2")
require(car);require(pda) ; require(gplots)
options(contrasts=c("contr.sum","contr.poly"))
rbd<- read.csv("./box3_10_2.csv")
rbd$bag_limit<- factor(rbd$bag_limit)
fit <- lm(catch ~ region*bag_limit, rbd)
Anova(fit , type="III")
lsmean(fit,factors="region")
lsmean(fit,factors="bag_limit")
# DROP THE INSIGNIFICANT INTERACTION TERM
fit <- lm(catch ~ region+ bag_limit, rbd)
Anova(fit, type="III")
lsmean(fit,factors="region", level=0.05, pdiff=T)
lsmean(fit,factors="bag_limit", level=0.05, pdiff=T)
interaction.plot(rbd$bag_limit,rbd$region, rbd$catch,type="b", xlab="Bag
Limit",ylab="Catch", trace.label ="Region")
# Plot Means with Error Bars
require(gplots)
plotmeans(catch~bag_limit,rbd, xlab="Walleye bag limit", ylab="Catch",
main="Mean Plot with 95% CI",las=1)

11.9 Analysis of covariance (ANCOVA)

R code chunk 47 Analysis of covariance (Hansen et al., 2007).
setwd("C:/contEdCourseData/part2")
require(car);require(pda)
options(contrasts=c("contr.sum","contr.poly"))
ancova<- read.csv("./box3_11.csv")
plot(growth~egg_diameter, ancova)
points(growth~egg_diameter, ancova,subset=substrate=="Sand",col="red")
points(growth~egg_diameter, ancova,subset=substrate=="Gravel",col="blue")
points(growth~egg_diameter, ancova,subset=substrate=="Cobble",col="black")
fit<- lm(growth~egg_diameter*substrate, ancova)
summary(fit)
Anova(fit, type="III")
ancova$predicted<- fitted(fit)
# ADD FITTED LINES TO THE PREVIOUS PLOT
points(predicted~egg_diameter, ancova,subset=substrate=="Sand",
col="red",type="l")
points(predicted~egg_diameter, ancova,subset=substrate=="Gravel",
col="blue",type="l")
points(predicted~egg_diameter, ancova,subset=substrate=="Cobble",
col="black",type="l")

36



11.10 Factorial model

R code chunk 48 Factorial model anlaysis (Hansen et al., 2007).
setwd("C:/contEdCourseData/part2")
require(car); require(pda)
options(contrasts=c("contr.sum","contr.poly"))
factorial<- read.csv("./box3_13.csv")
factorial$survival<- asin(factorial$survival/100)
fit<- lm(survival~size*release, factorial)
Anova(fit, type="III")
lsmean(fit)

12 Contingency tables

R code chunk 49 Contingency table for differences in length frequency data (Neumann and Allen,
2007).
setwd("C:/contEdCourseData/part2")
meanLength <- read.csv("./box9_5.csv")
str(meanLength)
meanLength
x<-xtabs(num~year + lcat, meanLength)
chisq.test (x)
x<-xtabs(num~year + lcat, meanLength, subset=year %in% c(1996,1998))
summary(x)
x<-xtabs(num~year + lcat, meanLength, subset=year %in% c(1996,2000))
summary(x)
x<-xtabs(num~year + lcat, meanLength, subset=year %in% c(1998,2000))
summary(x)
bon.alpha<-0.05/3

37



13 Linear regression type analysis

13.1 Simple and multiple regression

R code chunk 50 Correlation simple regression and multiple regression (Hansen et al., 2007).
setwd("C:/contEdCourseData/part2")
require(car);require(pda);require(lmtest);require(agricolae);require(MPV)
options(contrasts=c("contr.sum","contr.poly"))
regression <- read.csv("./box4_5.csv")
regression str(regression)
plot(CPE0~WINSTAGE, regression)
plot(CPE0~WINRET, regression)
plot(CPE0~SPRSTAGE, regression)
cor(regression[,c(2,4,5,6)], method="pearson",use="pairwise.complete.obs")
fit1<- lm(CPE0~WINSTAGE +WINRET +SPRSTAGE, regression)
anova(fit1)
summary(fit1)
Anova(fit1,type="II")
vif(fit1)
fit2<- lm(CPE0~WINSTAGE+ SPRSTAGE, regression)
Anova(fit2,type="II")
fit3<- lm(CPE0~WINSTAGE, regression)
Anova(fit3,type="II")

13.2 Log linear model

R code chunk 51 Log linear model to test for year class abundance differences (Hansen et al.,
2007).
setwd("C:/contEdCourseData/part2")
require(car);require(pda);require(agricolae)
options(contrasts=c("contr.sum","contr.poly"))
llinear<- read.csv("./box4_1.csv")
str(llinear)
llinear$YEARCL <- as.factor(llinear$YEARCL)
llinear$AGE<- as.factor(llinear$AGE)
fit<- lm(log(CATCH)~YEARCL + AGE, llinear)
anova(fit)
Anova(fit, type="III")
lsmean(fit, factors="YEARCL", pdiff=T, level=0.001786)
x<-pairwise.t.test(log(llinear$CATCH),llinear$YEARCL, paired=T,p.adj =
"bonf")
df<-df.residual(fit)
MSerror<-deviance(fit)/df
comparison <- LSD.test(log(llinear$CATCH),llinear$YEARCL,df,MSerror,
p.adj="none",alpha=0.00176, group=FALSE, main=" ")

38



13.3 Time series

R code chunk 52 Evaluation of time series trends in abundance (Hansen et al., 2007).
setwd("C:/contEdCourseData/part2")
require(car);require(pda);require(lmtest)
options(contrasts=c("contr.sum","contr.poly"))
timeSeries<- read.csv("./box4_2.csv")
str(timeSeries)
timeSeries<- subset(timeSeries, YEAR>1971)
plot(AGE0CPE~YEAR, timeSeries)
summary(timeSeries)
cor(timeSeries, method="pearson")
cor(timeSeries, method="kendall")
fit<- lm(AGE0CPE~YEAR, timeSeries)
summary(fit)
anova(fit)
x<-acf(residuals(fit))
plot(x)
x
dwtest(fit)# DURBIN WATSON TEST FOR AUTOCORRELLATION

39



13.4 Catch curve analysis

R code chunk 53 Catch curve regression to identify week and strong year classes (Hansen et al.,
2007).
setwd("C:/contEdCourseData/part2")
require(car);require(pda);require(lmtest);require(agricolae);require(MPV)
options(contrasts=c("contr.sum","contr.poly"))
catchCurve <- read.csv("./box4_4.csv")
catchCurve$LNUM<- log(catchCurve$NUM+1)
catchCurve$LMEANRET<- log10(catchCurve$MEANRET)
fit<- lm(LNUM~AGE, catchCurve)
catchCurve$Weight<-fitted(fit)
fit<- lm(LNUM~AGE, catchCurve, weights=Weight)
summary(fit)
anova(fit)
catchCurve$PLUM<- fitted(fit)
catchCurve$PredictedSE<- predict(fit, se.fit =TRUE)$se.fit
catchCurve$residual<- residuals(fit)
catchCurve$rstudent<- rstudent(fit)
catchCurve$cookd<- cookd(fit)
catchCurve
sum(catchCurve$residual)
sum(catchCurve$residual^2)
plot(LNUM~AGE, catchCurve, xlab="Year-class",ylab="Natural log Number at
age", las=1)
points(PLUM~AGE, catchCurve, type="l")

40



13.5 Catch curve

R code chunk 54 Catch curve analysis (Miranda and Bettoli, 2007).
setwd("C:/contEdCourseData/part2")
require(car);require(pda);require(lmtest);require(agricolae);require(MPV)
options(contrasts=c("contr.sum","contr.poly"))
ccurve <- read.csv("./box6_4.csv")
str(ccurve)
ccurve
ccurve$lCatch<- log(ccurve$Catch)
fit<- lm(lCatch~Age, ccurve, subset=Age>=3)
anova(fit)
ccurve$w<- predict(fit,ccurve)
fit<- lm(lCatch~Age, ccurve, subset=Age>=3,weights=w)
anova(fit)
coef(fit)
Z <- -coef(fit)[2]
Z
confidenceIntervals<- -confint(fit, "Age")
# PLOT THE CATCH AND MODEL PREDICTED CATCH
plot(lCatch~Age, ccurve,xlab="Age",ylab="Log(Catch)")
points(fitted(fit)~c(3:10),type="l",lwd=2)

41



13.6 Catch curve variability

R code chunk 55 Catch curve variability (Miranda and Bettoli, 2007).
setwd("C:/contEdCourseData/part2")
require(car);require(pda);require(lmtest);require(agricolae);require(MPV)
options(contrasts=c("contr.sum","contr.poly"))
ccurve_ancova <- read.csv("./box6_6.csv")
str(ccurve_ancova)
ccurve_ancova$Lake<- as.factor(ccurve_ancova$Lake)
ccurve_ancova$lCatch<- log(ccurve_ancova$Catch)
fit<- lm(lCatch~ Age, ccurve_ancova, subset=(Age>=2 & Lake=="1"))
summary(fit)
anova(fit)
fit<- lm(lCatch~Age, ccurve_ancova, subset=(Age>=2 & Lake==2))
summary(fit)
anova(fit)
fit<- lm(lCatch~Age+ Lake + Age:Lake, ccurve_ancova, subset=Age>=2)
ccurve_ancova$pred<- predict(fit, ccurve_ancova)
summary(fit)
anova(fit)
Anova(fit, type="III")
plot(fit)

plot(lCatch~Age, ccurve_ancova, type="n",xlab="Age",ylab="Log(Catch)")
points(lCatch~Age, ccurve_ancova,subset=Lake==1, col="grey")
points(lCatch~Age, ccurve_ancova,subset=Lake==2, col="black")
points(pred~Age, ccurve_ancova,subset=(Lake==1 & Age>=2),
col="grey",type="l")
points(pred~Age, ccurve_ancova,subset=(Lake==2 & Age>=2),
col="black",type="l")

42



14 Non linear models

14.1 Condition

R code chunk 56 Weight-length data anlaysis (Pope and Kruse, 2007).
setwd("C:/contEdCourseData/part2")
condition <- read.csv("./box10_1.csv")
options(contrasts=c("contr.sum","contr.poly"))
str(condition)
head(condition)
plot(condition)
condition$lWT<- log10(condition$WT)
condition$lTL<- log10(condition$TL)
fit<- lm(lWT~lTL, condition, subset=pop=="a")
summary(fit);anova(fit);confint(fit)
fit<- lm(lWT~lTL, condition, subset=pop=="b")
summary(fit);anova(fit);confint(fit)
fit<- lm(lWT~lTL, condition, subset=pop=="c")
summary(fit);anova(fit);confint(fit)
fit<- nls(WT~a*TL^b, condition, subset=pop=="a", start=list(a=0.000001,
b=3))
summary(fit);confint(fit) summary(fit)$coefficients
fit<- nls(WT~a*TL^b, condition, subset=pop=="b", start=list(a=0.000001,
b=3))
summary(fit);confint(fit) summary(fit)$coefficients
fit<- nls(WT~a*TL^b, condition, subset=pop=="c", start=list(a=0.000001,
b=3))
summary(fit);confint(fit) summary(fit)$coefficients
fit<- lm(lWT~lTL*pop, condition)
summary(fit);anova(fit);confint(fit)
Anova(fit, type="III")
fit<- lm(lWT~lTL + pop, condition)
summary(fit);anova(fit);confint(fit)
Anova(fit, type="III")

43



14.2 Spawner recruit curve

R code chunk 57 Beaverton Holt spawner recruit curve (Page 151 Maceina and Pereira, 2007).
setwd("C:/contEdCourseData/part2")
require(car);require(pda);require(lmtest);require(agricolae);require(MPV)
options(contrasts=c("contr.sum","contr.poly"))
bvh <- read.csv("./box4_7.csv")
bvh$LRECRUIT<- bvh$RECRUIT
plot(RECRUIT~SPAWNER, bvh)
fit<- nls(RECRUIT~(a*SPAWNER)/(1+ b*SPAWNER), bvh, start=list(a=0.03,
b=0.002))
confint.default(fit)
fit1<- nls(RECRUIT~(SPAWNER)/(1+ b*SPAWNER), bvh, start=list( b=0.002 ))
confint.default(fit1)

44



Part III

Some additional useful R codes

15 AIC Model Selection

R code chunk 58
# WELL AIC IS POPULAR NOW WHAT ABOUT THOSE?
setwd("C:/contEdCourseData/extras")
coho<-read.csv("http://www.public.iastate.edu/~mcolvin/575x/coho.csv")
pairs(coho[,c(3:8)]) summary(coho)
coho.global<- lm(log(cohoDensity)~ streamId + maxTemp + naturalCover + slope
+ percentPool + riparianCover,coho)
# LETS EVALUATE SOME HYPOTHESES
M1<-lm(log(cohoDensity)~1,coho)
M2<-lm(log(cohoDensity)~1,coho)
M3<-lm(log(cohoDensity)~1,coho)
M4<-lm(log(cohoDensity)~1,coho)
M5<-lm(log(cohoDensity)~1,coho)
M6<-lm(log(cohoDensity)~1,coho)
M7<-lm(log(cohoDensity)~1,coho)
M8<-lm(log(cohoDensity)~1,coho)
M9<-lm(log(cohoDensity)~1,coho)
M10<-lm(log(cohoDensity)~1,coho)
# MAKE A DATAFRAME WITH MODEL AIC
selectionTable <- data.frame(
model=c("global",paste("M",1:10,sep="")),
aic=c(AIC(coho.global), AIC(M1), AIC(M2), AIC(M3), AIC(M4), AIC(M5),
AIC(M6), AIC(M7), AIC(M8), AIC(M9), AIC(M10)))
# CALCULATE THE AIC DIFFERENCE (DELTA AIC)
selectionTable$deltaAic<-selectionTable$aic- min(selectionTable$aic)
# CALCULATE THE MODEL LIKELIHOOD
selectionTable$lik<-exp(-0.5*selectionTable$deltaAic)
# CALCULATE THE RELATIVE MODEL WEIGHT
selectionTable$weight<-selectionTable$lik/sum(selectionTable$lik)
# REORDER THE DATAFRAME BY AIC (FOR EASE OF INTERPRETATION)
selectionTable<-selectionTable[order(selectionTable$aic),]
# LOOK AT THE SELECTION RESULTS selectionTable

45



16 Study area maps

R code chunk 59
# PLOTTING A SHAPEFILE USING THE MAPTOOLS PACKAGE
# install.packages("maptools")
setwd("C:/contEdCourseData/extras")
require(maptools)
clearLake<- readShapePoly("c:/gis/clearlakenad83.shp",proj4string=CRS("+proj=utm
+zone=15 +datum=NAD83"))
plot(clearLake,axes=T, las=1)
par(mar=c(5,5,1,1))
plot(clearLake,axes=T, las=1)
# LETS GET SOME POINTS TO PUT ON THE MAP
trawling<-read.csv("http://www.public.iastate.edu/~mcolvin/trawl.csv")
points( startUTMy~startUTMx, trawling)
# IT IS A LAKE, LETS MAKE IT BLUE
plot(clearLake,axes=T, las=1, col="blue")
points(startUTMy~startUTMx, trawling,pch=16)
savePlot("./trawlSites",type="pdf")

17 Matrix population model

R code chunk 60
# AN AGE OR STAGE MATRIX OF FECUNDITIES AND SURVIVALS
A<- matrix(c( 0,2,3,4, 0.1,0,0,0, 0,0.3,0,0, 0,0,0.4,0),nrow=4, byrow=T)
# A MATRIX TO HOLD THE FORECASTS OF THE POP
population<- matrix(0, nrow=4, ncol=100)
# SEED THE POPULATION
population[,1]<- c(400, 200, 100, 40)
# FORECAST THE STRUCTURED POPULATION
for(i in 2:100){
population[,i]<- A%*%population[,i-1]}
# CALCULATE THE TOTAL POPULATION AT EACH TIME STEP
totalPopulation<- apply(population, 2, sum)
plot(totalPopulation)
# LAMBDA FOR MATRIX A
lambda<-as.numeric(eigen(A)$values[1])
w<-as.numeric(eigen(A)$vectors[,1]);
w<-w/sum(w); # STABLE AGE DISTRIBUTATION FOR MATRIX A
v<-as.numeric(eigen(t(A))$vectors[,1]);
v<-v/v[1]; # REPRODUCTIVE VALUE FOR MATRIX A
s<-outer(v,w)/sum(v*w); # SENSITIVITY FOR MATRIX A
e<-(s*A)/lambda # ELASTICITIES FOR MATRIX A

46



18 For loops

R code chunk 61
##### For loops are good for doing repetitive calculations
values<- list(x=rep(0,100)) # makes a list to hold the values
names(values) # values within the list we can add values to
values # look at the list
for(i in 1:100){
values$x[i]<- values$x[i]+rnorm(1,0,0.2) # Add a random number with mean 0
}
values$x

Code breakdown

1. for(i in 1:100): this specifies that the loop will do the operations for i being equal to 1
all the way to i being equal to 100

2. values$x[i]<- values$x[i]+rnorm(1,0,0.2): the replaces the ith value of x with the
value plus some

3. {}: the brackets contain the operations of the for loop

47



19 Solutions for in class examples

R code chunk 62
# Solutions # 3.1
mydataframe[4,6]
x<- mydataframe[5,2]
x

# 4.5
setwd("c:/")
setwd("C:/contEdCourseData/part1")
trawlData_csv<- read.csv("./trawlData.csv")
channel<- odbcConnectExcel("./trawlData.xls")
trawlData<- sqlFetch(channel, "data")
head(trawlData)
str(trawlData)

# 5.7
lakeData<- read.csv("./lakeData.csv")
catchData<- read.csv("./catchData.csv")
catchData<- merge(catchData, lakeData, by.x="lakeId", by.y="lakeId",
all.x=T)
summary<- data.frame(
lakeId= tapply(catchData$lakeId,catchData$lakeId, unique),
lakeName=tapply(catchData$lakeName,catchData$lakeId, unique),
lakeArea=tapply(catchData$lakeArea,catchData$lakeId, unique),
mean=tapply(catchData$fishLength,catchData$lakeId, mean),
var=tapply(catchData$fishLength,catchData$lakeId, var))
write.csv("./summary.csv")

# 8.3
walleye<- read.csv("./walleye.csv")
hist(walleye$length)
plot(weight~length, walleye)
walleye$loglength<- log(walleye$length)
walleye$logweight<- log(walleye$weight)
fit<- lm(logweight~loglength,walleye) fit
fit<-nls(weight~a*length^b,walleye, start=c(a=0.000002, b=3))
confint(fit)

References
Colvin, M., E. Katzenmyer, T. W. Stewart, and C. L. Pierce, 2008. The clear lake ecosystem

simulation model (clesm) project. Technical report, Iowa State University.

48



Colvin, M., E. Katzenmyer, T. W. Stewart, and C. L. Pierce, 2009. The clear lake ecosystem
simulation model (clesm) project. Technical report, Iowa State University.

Guy, C., and M. Brown. 2007. Analysis and interpretation of freshwater fisheries data. Analysis
and interpretation of freshwater fisheries data, Bethesda, MD.

Hansen, M. J., T. D. B. Jr., and D. B. Hayes, 2007. Sampling and experimental design. Pages
51–120 in C. Guy and M. Brown, editors. Analysis and interpretation of freshwater fisheries
data. American Fisheries Society, Bethesda, MD.

Hayes, D., J. Bence, T. Kwak, and B. Thompson, 2007. Abundance, biomass, and production. in
C. Guy and M. Brown, editors. Analysis and interpreation of freshwater fisheries data. American
Fisheries Society, Bethesda.

Isely, J. J., and T. B. Grabowski, 2007. Age and growth. Pages 187–228 in C. Guy and M. Brown,
editors. Analysis and interpretation of freshwater fisheries data. American Fisheries Society,
Bethesda, MD.

Maceina, M. J., and D. L. Pereira, 2007. Recruitment. Pages 121–186 in C. Guy and M. Brown,
editors. Analysis and interpretation of freshwater fisheries data. American Fisheries Society,
Bethesda, MD.

Miranda, L. E., and P. W. Bettoli, 2007. Mortality. Pages 229–278 in C. Guy and M. Brown,
editors. Analysis and interpretation of freshwater fisheries data. American Fisheries Society,
Bethesda, MD.

Neumann, R. M., and M. S. Allen, 2007. Size structure. Pages 375–422 in C. Guy and M. Brown,
editors. Analysis and interpretation of freshwater fisheries data. American Fisheries Society,
Bethesda, MD.

Pope, K. L., and C. G. Kruse, 2007. Condition. Pages 423–472 in C. Guy and M. Brown, editors.
Analysis and interpretation of freshwater fisheries data. American Fisheries Society, Bethesda,
MD.

49


	I Course overview
	Objectives
	About this document
	Why R?
	Helpful R web resources

	Getting started with R
	Downloading and installing R
	Is R just a big fancy calculator?
	Scripts
	Script annotation
	R help
	Packages

	Data structures and indexing
	Vectors
	Dataframes
	Lists

	Quick in class exercise

	Importing data
	Importing text files
	Tab delimited files
	Comma separated files

	Importing from MS Excel or Access
	Microsoft Excel
	Microsoft Access 

	Working directory
	Getting data out
	In class exercise

	Data manipulation and summarization
	Commonly used builtin functions for basic statistics
	Handling missing values

	Converting characters and numbers to factors
	Tabulating data
	Conditional expressions
	Subsetting a dataset
	Merging datasets
	In class exercise

	Visualizing data
	Boxplots
	Histograms
	Barplots
	Scatterplots
	Fine tuning scatter plots

	Legends

	Functions
	Some statistical functions
	Linear model
	Non linear models
	In class exercise
	Closing


	II Routine fisheries analysis 
	Estimation of Z from population metrics
	Age and length
	Age length key
	Back calculated length

	Sampling and experimental design
	Simple random sample
	Simple stratified random sampling
	Cluster sample
	Systematic sample
	Regression or double sampling
	Completely randomized design
	Diagnostics and assumptions
	Randomized block design
	Analysis of covariance (ANCOVA)
	Factorial model

	Contingency tables
	Linear regression type analysis
	Simple and multiple regression
	Log linear model
	Time series
	Catch curve analysis
	Catch curve 
	Catch curve variability

	Non linear models
	Condition
	Spawner recruit curve


	III Some additional useful R codes 
	AIC Model Selection
	Study area maps
	Matrix population model
	For loops
	Solutions for in class examples
	References


